
Use of Performance Technology for the Management of
Distributed Systems.1

D.J. Kerbyson1, J.S. Harper1, E. Papaefstathiou2, D.V. Wilcox1, G.R. Nudd1

1High Performance Systems Laboratory, Department of Computer Science,
University of Warwick, UK

2Microsoft Research, Cambridge, UK
Email: {djke,john}@dcs.warwick.ac.uk

Abstract. This paper describes a toolset, PACE, that provides detailed
predictive performance information throughout the implementation and
execution stages of an application. It is structured around a hierarchy of
performance models that describes distributed computing systems in terms of
its software, parallelisation and hardware components, providing performance
information concerning expected execution time, scalability and resource use of
applications. A principal aim of the work is to provide a capability for rapid
calculation of relevant performance numbers without sacrificing accuracy. The
predictive nature of the approach provides both pre- and post- implementation
analyses, and allows implementation alternatives to be explored prior to the
commitment of an application to a system. Because of the relatively fast
analysis times, these techniques can be used at run-time to assist in application
steering and efficient management of the available system resources.

1 Introduction

The increasing variety and complexity of high-performance computing systems
requires a large number of systems issues to be assessed prior to the execution of
applications on the available resources. The optimum computing configuration, the
preferred software formulation, and the estimated computation time are only a few of
the factors that need to be evaluated prior to making expensive commitments in
hardware and software development. Furthermore, for effective evaluation the
hardware system and the application software must be addressed simultaneously,
resulting in an analysis problem of considerable complexity. This is particularly true
for networked and distributed systems where system resource and software
partitioning present additional difficulties.

The current research into GRID based computing [1] have the potential of
providing access to a multitude of processing systems in a seamless fashion. That is,
from a user’s perspective, applications may be able to be executed on such a GRID
without the need of knowing which systems are being used, or where they are
physically located.

Such goals within the high performance community will rely on accurate
performance analysis capabilities. There is a clear need to determine the best

1 Euro-Par 2000, LNCS, Springer-Verlag, August 2000.

application to system resource mapping, given a number of possible choices in
available systems, the current dynamic behaviour of the systems and networks, and
application configurations. Such evaluations will need to be undertaken quickly so as
not to impact the performance of the systems. This is analogous to current simple
scheduling systems which often do not take into account the expected run-time of the
applications being dealt with.

The performance technology described in this work is aimed at provided dynamic
performance information on the expected run-time of applications across
heterogeneous processing systems. It is based on the use of a multi-level framework
encompassing all aspects of system and software. By reducing the performance
calculation to a number of simple models, arbitrarily complex systems can be
represented to any level of detail.

The work is part of a comprehensive effort to develop a Performance Analysis and
Characterisation Environment (PACE), which will provide quantitative data
concerning the performance of sophisticated applications running on high-
performance systems. Because the approach does not rely on obtaining data of
specific applications operating on specific machine configurations, this type of
analysis provides predictive information, including:

• Execution Time • System Sizing
• Scalability • Mapping Strategies
• On-the-fly Steering • Dynamic Scheduling

PACE can supply accurate performance information for both the detailed analysis
of an application (possibly during its development or porting to a new system), and
also as input to resources allocation (scheduling) systems on-the-fly (at run-time).

An overview of PACE is given in the following sections. Section 2 describes the
main components of the PACE system. Section 3 details an underlying language used
within PACE detailing the performance aspects of the applications / systems. An
application may be automatically translated to the internal PACE language
representation. Section 4 describes how performance predictions are obtained in
PACE. Examples of using PACE performance models for off-line and on-the-fly
analysis for scheduling applications on distributed resources is included in Section 5.

2 The PACE System

PACE (Performance Analysis and Characterisation Environment) [2] is a
performance prediction and analysis toolset whose potential users include application
programmers without a formal training in modeling and performance analysis.
Currently, high performance applications based on message passing (using MPI or
PVM) are supported. In principal any hardware platform that utilises this
programming model can be analysed within PACE, and the technique has been
applied to various workstation clusters, the SGI origin systems, and the CRAY T3E to
date. PACE allows the simultaneous utilisation of more than one platform, thus
supporting heterogeneous systems in meta-computing environments.

There are several properties of PACE that enable it to be used throughout the
development, and execution (run-time scheduling), of applications. These include:

Lifecycle Coverage – Performance analysis can be performed at any stage in the
software lifecycle [3,4]. As code is refined, performance information is updated.
In a distributed execution environment, timing information is available on-the-fly
for determining which resources should be used.

Abstraction – Different forms of workload information need to be handled in
conjunction with lifecycle coverage, where many levels of abstraction occur.
These range from complexity type analysis, source code analysis, intermediate
code (compile time) analysis, and timing information (at run- time).

Hierarchical – PACE encapsulate necessary performance information in a hierarchy.
For instance an application performance description can be partitioned into
constituent performance models. Similarly, a performance model for a system can
consist of many component models.

Modularity – All performance models incorporated into the analysis should adhere to
a strict modular structure so that a model can easily be replaced and re-used. This
can be used to give comparative performance information, e.g. for a comparison
of different system configurations in a meta-computing environment.

The main components of the PACE tool-set are shown in Fig. 1. A core component
of PACE is the performance language, CHIP3S (detailed in Section 3) that describes
the performance aspects of an application and its parallelisation. Other parts of the
PACE system include:

Object Editor – to assist in the creation and editing of individual performance objects.
Pre-defined objects can be re-used through an object library system.

Source Code Analysis – enables source code to be analysed and translated into
CHIP3S. The translation performs a static analysis of the code, and dynamic
constructs are resolved either by profiling or user specification.

Compiler – translates the performance scripts into C language code, linked to an
evaluation library and specific hardware objects, resulting in a self-contained
executable. The performance model remains parameterised in terms of system
configurations (e.g. processor mapping) and application parameters (data sizes).

Hardware Configuration – allows the definition of a computing environment in terms
of its constituent performance model components and configuration information.
An underlying Hardware Modeling and Configuration Language (HMCL) is used.

Evaluation Engine –combines the workload information with component hardware
models to produce time predictions. The output can be either overall execution
time estimates, or trace information of the expected application behavior.

Source
Code

Analysis

Object
Editor

Object
Library

Compiler

CPU

Cache

Network

Performance
Analysis

On-the-fly
Analysis

Hardware Models

Evaluation Engine

Application Model

Language Scripts

Fig. 1. Schematic of the PACE System.

Performance Analysis – both ‘off-line’ and ‘on-the-fly’ analysis are possible. Off-line
analysis allows user interaction and can provide insights into expected
performance. On-the-fly analysis facilitates dynamic decision making at run-time,
for example to determine which code to be executed on which available system.

There is very little restriction on how the component hardware models can be
implemented within this environment, which allows flexibility in their design and
implementation. Support for their construction is currently under development in the
form of an Application Programming Interface (API) that will allow access to the
CHIP3S performance workload information and the evaluation engine.

3 Performance Language

A core component of PACE is the specialised performance language, CHIP3S
(Characterisation Instrumentation for Performance Prediction of Parallel Systems) [5]
based on Software Performance Engineering principles [6]. This language has a strict
object structure encapsulating the necessary performance information concerning
each of the software and hardware components. A performance analysis using CHIP3S
comprises many objects linked together through the underlying language. It represents
a novel contribution to performance prediction and evaluation studies.

3.1 Performance Object Hierarchy

Performance objects are organised into four categories: application, subtask,
parallel template, and hardware. The aim of this organisation is the creation of
independent objects that describe the computational parts of the application (within
the application and subtask objects), the parallelisation strategy and mapping (parallel
template object), and the system models (hardware object). The objects as follows:

Application Object - acts as the entry point to the performance model, and interfaces
to the parameters in the model (e.g. to change the problem size). It also specifies
the system being used, and the ordering of subtask objects.

Subtask Objects - represents one key stage in the application and contains: a
description of sequential parts of the parallel program. These are modeled using
CHIP3S procedures which may be automatically formed from the source code.

Parallel Template Objects - describes the computation–communication pattern of a
subtask object. Each contains steps representing a single stage of the parallel
algorithm. A step defines the hardware resource.

Hardware Objects - The performance aspects of each system are encapsulated into
separate hardware objects - a collection of system specification parameters (e.g.
cache size, number of processors), micro-benchmark results (e.g. atomic
language operations), statistical models (e.g. regression communication models),
analytical models (e.g. cache, communication contention), and heuristics.

A hierarchical set of objects form a complete performance model. An example of a
complete performance model, represented by a Hierarchical Layered Framework
Diagram (HLFD) is shown in Fig. 2. The boxes represent the individual objects, and
the arcs show the dependencies between objects in different layers.

Application
Object

Subtask
Objects

Parallel Template
Objects

Hardware
Objects

Task 1 Task 2

Task 1
Mapping

Task 2
Mapping

Fig. 2. Example HLFD illustrating possible parallelisation and hardware combinations.

In this example, the model contains two subtask objects, each with associated
parallel templates and hardware objects. When several systems are available, there are
choices to be made in how the application will be mapped. Such a situation is shown
in Fig. 2 where there are three alternatives of mapping Task 1 (and two for Task 2) on
two available systems. The shading also indicates the best mapping to these systems.
Note that the two tasks are found to use different optimal hardware platforms.

Type Identifier

Include

External
Variables

Link

Options

Procedures

Object 1

Object 2

Object 1

Object 2

Object 3

Objects in higher layers

Objects in lower layers

Fig. 3. Performance object structure

Include – references other objects used lower
in the hierarchy.

External Variables – variables visible to
objects above in the hierarchy.

Linking – modifies external variables of
objects lower in the hierarchy

Option – sets default options for the object
Procedures –structural information for either:

sub-task ordering (application object),
computational components (sub-task
objects), or computation / communication
structure (parallel template objects).

3.2 Performance object definition

Each object describes the performance aspects of the corresponding system
component but all have a similar structure. Each is comprised of internal structure
(hidden from other objects), internal options (governing its default behavior), and an
interface used by other objects to modify their behavior. A schematic representation
of an object, in terms of its constituent parts, is shown in Fig. 3: A full definition of
the CHIP3S performance language is out of the scope of this paper [7].

Application
Layer

Parallelization
Layer

ACT
SUIF

Format

Profiler
Source
Code

SUIF
Front End

PACE Scripts

User

Fig. 4. Model creation process with ACT.

3.3 Software Objects

Objects representing software within the performance model are formed using
ACT (Application Characterisation Tool). ACT provides semi-automated methods to
produce performance models from existing sequential or parallel code for both the
computational and parallel parts of the application, Fig. 4. Initially, the application
code is processed by the SUIF front end [8] and translated into SUIF. The unknown
parameters within the program (e.g. loop iterations, conditional probabilities) that
cannot be resolved by static analysis are found either by profiling or user
specification. ACT can describe resources at four levels:

Language Characterisation (HLLC) – using source code (C and Fortran supported).

Intermediate Format Code Characterisation (IFCC) - characterisation of compiler
representation (SUIF, Stanford University Intermediate Format, is supported) .

Instruction Code Characterisation (ICC) – using host assembly.
Component Timings (CT) - application component benchmarked. This produces

accurate results but is non-portable across target platforms.

3.4 Hardware Objects

For each hardware system modeled an object describes the time taken by each
resource available. For example, this might be a model of the time taken by an inter-
processor communication, or the time taken by a floating-point multiply instruction.
These models can take many different forms, ranging, from micro-benchmark timings
of individual operations (obtained from an available system) to complex analytical
models of the devices involved. One of the goals of PACE is to allow hardware
objects to be easily extended. To this end an API is being developed that will enable
third party models to be developed and incorporated into the prediction system.

Hardware objects are flexible and can be expressed in many ways. Each model is
described by an evaluation method (for the hardware resource), input configuration
parameters, and access to relevant workload information. Three component models
are included in Fig 5. The workload information is passed from objects in upper
layers, and is used by the evaluation to give time predictions. The main benefit of this
structure is the flexibility; analytical models may be expressed by using complex
modeling algorithms and comparatively simple inputs, whereas models based on
benchmark timings are easily expressed but have many input parameters.

To simplify the task of modeling many different hardware systems, a hierarchical
database is used to store the configuration parameters associated with each hardware
system. The Hardware Model Configuration Language (HMCL) allows users to
define new hardware objects by specifying the system-dependent parameters. On
evaluation, the relevant sets of parameters are retrieved, and supplied to the
evaluation methods for each of the component models. In addition, there is no
restriction that the hardware parameters need be static - they can be altered at run-
time either to refine accuracy, or to reflect dynamically changing systems.

Component models currently in PACE include: computational models supporting
HLLC, IFCC, ICC and CT workloads, communication models (MPI & PVM), and
multi-level cache memory models [9]. These are all generic models (the same for all
supported systems), but are parameterised in terms of specific system performances.

4 Model Evaluation

The evaluation engine uses the CHIP3S performance objects to produce predictions
for the system. The evaluation process is outlined in Fig. 5. Initially, the application
and sub-task objects are evaluated, producing predictions for the workload. These
predictions are then used when evaluating computation steps in the parallel templates.

Calls to each component hardware device are passed to the evaluation engine. A
dispatcher distributes input from the workload descriptions to an event handler and
then to the individual hardware models. The event handler constructs an event list for
each processor being modeled. Although the events can be identified through the

target of each step in the parallel template, the time spent using the device is still
unknown at this point. However, each individual hardware model can produce a time
prediction for an event based on its parameters. The resultant prediction is recorded in
the event list. When all device requests have been handled, the evaluation engine
processes the event list to produce an overall performance estimate for the execution
time of the application (by examining all event lists to identify the step that ends last).

Processing the event list is a two-stage operation. The first stage constructs the
events, and the second resolves ordering dependencies, taking into account contention
factors. For example, in predicting the time for a communication, the traffic on the
inter-connection network must be known to calculate channel contention. In addition,
messages cannot be received until after they are sent! The exception to this type of
evaluation is a computational event that involves a single CPU device - this can be
predicted in the first stage of evaluation (interaction is not required with other events).

Application
Layer

Parallelisation
Layer

PACE Scripts

Dispatcher

Event
Processing

Event
ListE

va
lu

at
io

n
E

ng
in

e

Trace File

C
om

po
ne

nt
 M

od
el

s

CPU Cache Network

Fig 5. The evaluation process to produce a predictive trace within PACE.
The ability of PACE to produce predictive traces derives directly from the event

list formed during model evaluation. Predictive traces are produced in standard trace
formats. They are based on predictions and not run-time observations. Two formats
are supported by PACE: PICL (Paragraph), and SDDF (PABLO) [10].

5 Performance Models in Use

The PACE system has been used to investigate many codes from several
application domains including image processing, computational chemistry, radar,
particle physics, and financial applications. PACE performance models are in the
form of self-contained executable binaries parameterised in terms of application and
system configuration parameters. The evaluation time of a PACE performance model
is rapid (typically seconds of CPU use) as a consequence of utilising many small
analytical component hardware models. The rapid execution of the model lends itself
to dynamic situations as well as traditional off-line analysis as described below.

5.1 Off-line analysis

A common area of interest in investigating performance is examining the
execution time as system and/or problem size is varied. Application execution for a

particular system configuration and set of problem parameters may be examined using
trace analysis. Fig. 6 shows a predictive trace analysis session within Pablo. In the
background, an analysis tree contains an input trace file (at its root node) and, using
data manipulation nodes, results in a number of separate displays (leaves in the tree).
Four types of displays are shown producing summary information on various aspects
of the expected communication behavior. For example, the display in the lower left
indicates the communication between source and destination nodes in the system
(using contours to represent traffic), and the middle display shows the same
information displayed using ‘bubbles’, with traffic represented by size and colour.

Fig. 6. Analysis of trace data in Pablo

5.2 On-the-fly Analysis

An important application of prediction data is that of dynamic performance-steered
optimisation [11,12] which can be applied for efficient system management. The
PACE model is able to provide performance information for a given application on a
given system within a couple of seconds. This enables the models to be applied on-
the-fly for run-time optimisation. Thus, dynamic just-in-time decisions can be made
about the execution of an application, or set of applications, on the available system
(or systems). This represents a radical departure from existing practice, where
optimisation usually takes place only during the program’s development stage

Two forms of on-the-fly analysis have been put into use by PACE. The first has
involved a single image processing application, in which several choices were
available during its execution [13]. The second is a scheduling system applied to a
network of heterogeneous workstations. This is explained in more detail below.

The console window of the scheduling system, using performance information and
a Genetic Algorithm (GA) is shown in Fig. 7. The coloured bars represent the
mapping of applications to processors; the lengths of the bars indicate the predicted
time for the number of processors allocated. The system works as follows:

1. (An application (and performance model) is submitted to the scheduling system.

2. The GA contains all the performance data for the currently submitted
applications, and constantly minimises the execution time for the application set.

3. Applications currently executing are ‘fixed’ and cannot change the schedule.
4. Feedback updates the GA on premature completion, or late-running applications.

One particular advantage of the GA method over the other heuristics tried is that it
is an evolutionary process, and is therefore able to absorb slight changes, such as the
addition or deletion of programs from its optimisation set, or changes in the resources
available in the computing system.

Fig. 7. Console screen of the PACE scheduling system showing the system and task
interfaces (left panels) and a view of the Gantt chart of queued tasks (right panel).

6 Conclusion

This work has described a methodology for providing predictive performance
information on parallel applications using a hierarchical model of the application, its
parallelisation, and the distributed system. An implementation of this approach, the
PACE toolset, has been developed over last three years, and has been used to explore
performance issues in a number of application domains. The system is now in a
position to provide detailed information for use in static analysis, such as trace data,
and on-the-fly analysis for use in scheduling and resource allocation schemes.

The speed with which the prediction information is calculated has led to
investigations into its use in dynamic optimisation of individual programs and of the
computing system as a whole. Examples have been presented of dynamic algorithm
selection and system optimisation, which are both performed at run-time. These
techniques have clear use for the management of dynamically changing systems and
GRID based computing environments.

Acknowledgement

This work is funded in part by DARPA contract N66001-97-C-8530, awarded
under the Performance Technology Initiative administered by NOSC.

References
1. I Foster, C Kesselman, “The GRID”, Morgan Kaufman (1998)
2. G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper, D.V. Wilcox,

“PACE – A Toolset for the Performance Prediction of Parallel and Distributed Systems”, in
the Journal of High Performance Applications, Vol. 14, No. 3 (2000) 228-251

3. D.G. Green et al. “HPCN tools: a European perspective”, IEEE Concurrency, Vol. 5(3)
(1997) 38-43

4. I. Gorton and I.E. Jelly, “Software engineering for parallel and distributed systems,
challenges and opportunities”, IEEE Concurrency, Vol. 5(3) (1997) 12-15

5. E. Papaefstathiou et al., “An overview of the CHIP3S performance prediction toolset for
parallel systems”, in Proc. of 8th ISCA Int. Conf. on Parallel and Distributed Computing
Systems (1995) 527-533

6. C.U. Smith, “Performance Engineering of Software Systems”, Addison Wesley (1990).
7. E. Papaefstathiou et al., “An introduction to the CHIP3S language for characterising parallel

systems in performance studies”, Research Report RR335, Dep. of Computer Science,
University of Warwick (1997)

8. Stanford Compiler Group, “ The SUIF Library” , The SUIF compiler documentation set,
Stanford University (1994)

9. Harper, J.S., Kerbyson, D.J., Nudd, G.R.: Analytical Modeling of Set-Associative Cache
Behavior, IEEE Transactions on Computers, Vol. 48(10) (1999) 1009-1024

10. D.A. Reed, et al., “Scalable Performance Analysis: The Pablo Analysis Environment”, in:
Proc. Scalable Parallel Libraries Conf., IEEE Computer Society (1993)

11. R. Wolski, “Dynamically Forecasting Network Performance Using the Network Weather
Service”, UCSD Technical Report, TR-CS96-494 (1996)

12. J. Gehring, A. Reinefeld, “MARS - A framework for minizing the job execution time in a
metacomputing environment”, Future Generation Computer Systems, Vol. 12 (1996) 87-99

13. D.J. Kerbyson, E. Papaefstathiou and G.R. Nudd, “Application execution steering using on-
the-fly performance prediction”, in: High Performance Computing and Networking, Vol
1401, LNCS Springer-Verlag (1998) 718-727

